
Mapping-aware Logic Synthesis with
Parallelized Stochastic Optimization

Zhiru Zhang
School of ECE, Cornell University

September 29, 2017 @ EPFL

1

A Case Study on Digit Recognition

Manual: combinational
HLS tool: 2 cycles

HLS Manual
LUTs 2405 1305
FFs 2400 810
BRAMs 60 60

bit6 popcount(bit49 digit)
{
bit6 ones = 0;
for (i = 0; i < 49; i++)
ones += digit[i];

return ones;
}

…

(Narrow)
Adder Tree

…

49 input bits

6 output bits
Computes hamming distance
between training & test samples

2

LUT-based Technology Mapping

a

b

d f

c

g

h

i0

i1

i2

i3
i4 A 3-feasible cone

Another 3-feasible cone

� Look-up tables (LUTs): the core building blocks of
FPGAs
– A k-LUT can implement any K-input 1-output Boolean function, or

any k-feasible cone in the logic network

Delay estimation in HLS is inaccurate without considering LUT mapping

e

Scheduling and Mapping Interdependence

HLS

Post-RTL
Flow

Scheduling

Mapping

3

Determine LUT network
Þ More realistic delay, but cannot

change register boundaries

Determine register boundaries
Þ Inaccurate delay model due to

lack of mapping awareness

Mapping-Aware Scheduling [FPGA’15]

Conventional schedule
(5ns cycle time target)
Latency = 3 cycles

4

Mapping-aware schedule
(4-input LUT)

Cycle 1

Cycle 1

Cycle 3

Cycle 2

I3

I1

A

C

E

D

I2

B

I4

I3

I1

A

C

E

D

I2

B

I4

LA = (1, 1)

LB = (1, 1)

LE = (1, 1)

LD = (1, 2)

LC = (1, 2)

Latency = 1 cycle

M. Tan, S. Dai, U. Gupta, Z. Zhang, Mapping-Aware Constrained Scheduling for LUT-Based FPGAs, FPGA’2015.

� Case 1: Min-area mapping without logic restructuring
– Already NP-hard [1]

� Case 2: with logic restructuring
– Even harder to find optimal solution
– Existing approach: heuristically transform logic network for better

mapping quality

5

What about Post-RTL Synthesis?

ca b

o1 o2

Example: map to 3-input LUTs
a

Focus of this talk

a c

o2

b c

a

o1

[1] Farrahi and Sarrafzadeh, TCAD’02

� A typical area-minimizing script in ABC:

6

Typical Pre-mapping Transformation Sequence

Initial and-inverter graph for xor5

balance rewrite balance rewrite

balance rewrite

balance

rewrite
technology

mapping

A predetermined technology-independent optimization sequence

7

Autotuning Logic Synthesis Tool

� Applying DATuner, a distributed autotuning framework,
to auto determine the logic transformation sequence

DATuner

Optimized tool
settings

Design
CAD Tool

Settings

QoR

retime

rewire

off

off

on

on

github.com/cornell-zhang/datuner
C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, and Z. Zhang, A Parallel Bandit-Based Approach for Autotuning
FPGA Compilation, FPGA’2017.

� Separating promising from unpromising subspaces
– Guided by information gain derived from QoR of known samples

DATuner: Dynamic Solution Space Partitioning

retime

rewire

on off

on

off

Partition B (good)
retime

rewire

on off

on

off

Partition A (bad)

!" !#!"

!#

$!% = 	−
6
12
× log

6
12

−
6
12
× log

6
12

= 0.3													(!% = !" ∪ !#)

$!" = $!# = 0
Information gain = 0.3 − "

#
0 + 0 = 0.3

$!" = $!# = 0.3
Information gain = 0.3 − "

#
0.3 + 0.3 = 0

8

� ABC Optimized: designs optimized with compress2rs script
� DATuner: a budget of 128 ABC runs across 4 machines
� EPFL benchmarks: http://lsi.epfl.ch/benchmarks

Autotuning vs. ABC: Unconstrained Area Minimization

0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

 a
re

a

ABC Optimized DATuner

7% improvement

� ABC Optimized: designs optimized with compress2rs script
� DATuner: a budget of 128 ABC runs across 4 machines
� EPFL benchmarks: http://lsi.epfl.ch/benchmarks

– Best known results: from EPFL record, version 2017.1

Autotuning vs. Best Known Records (v2017.1)

0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

 a
re

a

ABC Optimized DATuner Best known results (2017.1 version)

7% improvement

29% over
baseline

� Mapping-guided logic transformations
– Iteratively improve area

� Effective partitioning and parallelization technique
– Improve both runtime and design quality

PIMap: Parallelized Mapping-Aware Logic Synthesis
[FPGA’17]

11

thread 1 thread 2

…

Logic transformation Technology mapping

G. Liu and Z. Zhang, A Parallelized Iterative Improvement Approach to Area Optimization for LUT-Based
Technology Mapping, FPGA’2017.

12

PIMap Technique: Iterative Area Minimization

Use mapping result to guide randomly
proposed logic transformations

13

PIMap Technique: Iterative Area Minimization

15 LUTs

Use mapping result to guide randomly
proposed logic transformations

14

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1

14 LUTs

Use mapping result to guide randomly
proposed logic transformations

15

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1

14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]:
Accept current transformation if 789: 0,1 < exp	(−@ ABCD↓FGH

ABCD↓IJK
)

Use mapping result to guide randomly
proposed logic transformations

16

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1 Transformation #2

14 LUTs 14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]:
Accept current transformation if 789: 0,1 < exp	(−@ ABCD↓FGH

ABCD↓IJK
)

Use mapping result to guide randomly
proposed logic transformations

17

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1 Transformation #2

14 LUTs 14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]:
Accept current transformation if 789: 0,1 < exp	(−@ ABCD↓FGH

ABCD↓IJK
)

Use mapping result to guide randomly
proposed logic transformations

18

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1 Transformation #2

…

14 LUTs 14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]:
Accept current transformation if 789: 0,1 < exp	(−@ ABCD↓FGH

ABCD↓IJK
)

Use mapping result to guide randomly
proposed logic transformations

� Without partitioning
– Long runtime per trial
– Easily stuck at local minimum

Need for Partitioning

3300

3400

3500

3600

3700

3800

3900

0 5 10 15 20 25 30 35 40
LU

T
Co

un
t

Trial

No partition

19

EPFL design: div

20

PIMap Technique: Partitioning and Parallelization

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

21

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

PIMap Technique: Partitioning and Parallelization

22

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

PIMap Technique: Partitioning and Parallelization

23

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

PIMap Technique: Partitioning and Parallelization

24

15 LUTs
15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

Subgraph 1 Subgraph 2

PIMap Technique: Partitioning and Parallelization

25

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

PIMap Technique: Partitioning and Parallelization

26

14 LUTs 15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

PIMap Technique: Partitioning and Parallelization

27

14 LUTs 15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

PIMap Technique: Partitioning and Parallelization

28

14 LUTs 15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

33 LUTs

PIMap Technique: Partitioning and Parallelization

29

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

Repartition using different seeds

33 LUTs

Optimized design after trial 1

PIMap Technique: Repartition

30

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

Repartition using different seeds Iterative area minimization

33 LUTs

Optimized design after trial 1

Recombine subgraphs

PIMap Technique: Repartition

31

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

One trial

Repartition using different seeds Iterative area minimization

33 LUTs

Optimized design after trial 1

Recombine subgraphs

PIMap Technique: Repartition

Partitioning Schemes

3300

3400

3500

3600

3700

3800

3900

0 5 10 15 20 25 30 35 40
LU

T
Co

un
t

Trial

No partition
16 partitions, 5 LUTs/partition

32

EPFL design: div

� Without partitioning
– Long runtime per trial
– Easily stuck in local optima

� Fine-grained partition
– Bear a similarity to exact synthesis
– Fast runtime per trial
– But slow progress overall

� Without partitioning
– Long runtime per trial
– Easily stuck in local optima

� Fine-grained partition
– Bear a similarity to exact synthesis
– Fast runtime per trial
– But slow progress overall

� Coarse-grained partition
– Balance runtime and solution quality
– Repartition between trials to further

improve quality

Partitioning Schemes

3300

3400

3500

3600

3700

3800

3900

0 5 10 15 20 25 30 35 40
LU

T
Co

un
t

Trial

No partition
16 partitions, 5 LUTs/partition
16 partitions, 100 LUTs/partition

33

EPFL design: div

34

PIMap Overall Flow

Design C1908 from the MCNC benchmark suite
5 trials in total

Observations:
1. Partition boundaries vary between trials

Uncover better structure
2. Overall network structure differ significantly between trials

Discover a wide range of designs

Experimental Setup

35

ABC’s tech
mapper

ABC’s logic
transformations:

balance, rewrite, refactor

Benchmark Initial design
10 largest

MCNC
designs [1]

pre-synthesized using
ABC’s compress2rs

script
EPFL

arithmetic
designs [2]

best-known mapping
designs [2]

Iterative area
minimization

routine

Subgraph extraction
and parallelization

control

PIMap toolchain Benchmarks

[1] Yang, MCNC’91
[2] Amarù, et al., http://lsi.epfl.ch/benchmarks

Configuration 40 trials, 100 iterations of area minimization per trial
Partitioning up to 16 subgraphs, each with up to 100 LUTs

Computing resource up to 8 machines, each with a quad-core Xeon processor

Setup

36

Area Minimization Results

� Initial design: best-known results from EPFL record

70%

75%

80%

85%

90%

95%

100%

adder
(201)

shifter
(512)

divisor
(3813)

hyp
(44635)

log2
(7344)

max
(532)

mult
(5681)

sine
(1347)

sqrt
(3286)

square
(3800)

average

N
or

m
al

iz
ed

 a
re

a

Initial design 5 trials 10 trials 40 trials

design name
(initial LUT count)

Best-known results

37

Area Minimization Results

70%

75%

80%

85%

90%

95%

100%

adder
(201)

shifter
(512)

divisor
(3813)

hyp
(44635)

log2
(7344)

max
(532)

mult
(5681)

sine
(1347)

sqrt
(3286)

square
(3800)

average

N
or

m
al

iz
ed

 a
re

a

Initial design 5 trials 10 trials 40 trials

design name
(initial LUT count)

Best-known results

7% improvement14% improvement
(3800 to 3281 LUTs)

� Initial design: best-known results from EPFL record
� Area improvements

– EPFL: 7% on average, up to 14%

� Initial design: best-known results from EPFL record
� Area improvements

– EPFL: 7% on average, up to 14%
– Can effectively handle large circuit (~44k LUTs)

� Also able to improve all 10 control-intensive designs in EPFL
benchmark suite

38

Area Minimization Results

70%

75%

80%

85%

90%

95%

100%

adder
(201)

shifter
(512)

divisor
(3813)

hyp
(44635)

log2
(7344)

max
(532)

mult
(5681)

sine
(1347)

sqrt
(3286)

square
(3800)

average

N
or

m
al

iz
ed

 a
re

a

Initial design 5 trials 10 trials 40 trials

design name
(initial LUT count)

LUT Count vs. Gate Count Reduction

0.88
0.92
0.96

1
1.04
1.08
1.12
1.16

0 10 20 30 40

multiplier

0.9

0.94

0.98

1.02

1.06

1.1

0 10 20 30 40

square

LUT Count
Gate Count

Number of Trial

0.88

0.92

0.96

1

1.04

0 10 20 30 40

div

0.92
0.96

1
1.04
1.08
1.12
1.16

0 10 20 30 40

log2
No

rm
al

ize
d

No
de

 C
ou

nt

39

Verified:
post-mapping area does not necessarily correlate with pre-mapping area

� Trade-off between runtime vs. progress per trial
– Optimal subgraph size is around 100 LUTs

Partition Granularity vs. Runtime

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

No
rm

al
ize

d
Ru

nt
im

e

Subgraph Size
div log2 multiplier square

40

� Constraint: no depth increase compared to initial design
– Initial designs generated by ABC’s depth-minimizing resyn2 script

� Area improvements under depth constraint for MCNC benchmarks
– 11% on average, up to 30%

41

Depth Constrained Area Minimization on MCNC

design name
(initial LUT count/depth)

60%

65%

70%

75%

80%

85%

90%

95%

100%

alu4
(511/5)

apex2
(674/6)

apex4
(588/5)

des
(818/5)

ex1010
(655/5)

ex5p
(351/5)

misex3
(443/5)

pdc
(1431/7)

seq
(693/5)

spla
(1392/7)

average

N
or

m
al

iz
ed

 a
re

a

Initial design 5 trials 10 trials 40 trials

30% improvement

Extending PIMap to Approximate Logic Synthesis

One trial

Repartition using different seeds Iterative area minimization

Recombine subgraphs

Hypothesis testing of error metric

Approximate transformations

42

� Previous approaches (sample-based testing):
– Randomly pick N input vectors, then simulate, error rate = Nincorrect/N

� Our approach: Formally quantify errors using hypothesis testing

Statistically Certified Approximate Synthesis
[ICCAD’17]

43

Error metric Test target Test statistic
Error rate Sample occurrence Binomial test

Average error magnitude Sample mean T-test
Error variance Sample variance L2-test

Testing different types of error metrics

G. Liu and Z. Zhang, Statistically Certified Approximate Logic Synthesis, ICCAD’2017.

� Current logic synthesis flow still leaves nontrivial room for area
improvement (up to 30%)

� Parallelized stochastic optimization is an effective approach for
technology-aware synthesis

� Similar opportunities exist in RTL and high-level synthesis

44

PIMap Summary

Chortle

DAGMap

FlowMap

CutMap
DAOMap

K and L
IMap

ABC Map

Exact
synthesis

PIMap
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1990 1994 1998 2002 2006 2010 2014 2018

No
rm

al
ize

d
Ar

ea

Year
Chortle: Francis, et al., DAC’90
DAGMap: Chen, et al., DT’92
FlowMap: Cong and Ding, TCAD’94

CutMap: Cong and Hwang, FPGA’95
DAOMap: Chen and Cong, ICCAD’04
K and L: Kao and Lai, TDAES’05

Imap: Manohararajah, et al., TCAD’06
ABC Map: Mishchenko, et al., TCAD’07
Exact synthesis: Haaswijk, et al., ASPDAC’17

