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A Case Study on Digit Recognition

Manual: combinational
HLS tool: 2 cycles

HLS Manual
LUTs 2405 1305
FFs 2400 810
BRAMs 60 60

bit6 popcount(bit49 digit) 
{
bit6 ones = 0;
for (i = 0; i < 49; i++)
ones += digit[i];

return ones;
}

…

(Narrow) 
Adder Tree

…

49 input bits

6 output bits
Computes hamming distance 
between training & test samples
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LUT-based Technology Mapping
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Another 3-feasible cone

� Look-up tables (LUTs): the core building blocks of 
FPGAs
– A k-LUT can implement any K-input 1-output Boolean function, or 

any k-feasible cone in the logic network

Delay estimation in HLS is inaccurate without considering LUT mapping

e



Scheduling and Mapping Interdependence

HLS

Post-RTL 
Flow

Scheduling

Mapping
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Determine LUT network
Þ More realistic delay, but cannot

change register boundaries

Determine register boundaries
Þ Inaccurate delay model due to 

lack of mapping awareness



Mapping-Aware Scheduling [FPGA’15]

Conventional schedule 
(5ns cycle time target)
Latency = 3 cycles
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Mapping-aware schedule
(4-input LUT)

Cycle 1

Cycle 1

Cycle 3

Cycle 2
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LA = (1, 1)

LB = (1, 1)

LE = (1, 1)

LD = (1, 2)

LC = (1, 2)

Latency = 1 cycle

M. Tan, S. Dai, U. Gupta, Z. Zhang, Mapping-Aware Constrained Scheduling for LUT-Based FPGAs, FPGA’2015.



� Case 1: Min-area mapping without logic restructuring
– Already NP-hard [1]

� Case 2: with logic restructuring
– Even harder to find optimal solution
– Existing approach: heuristically transform logic network for better 

mapping quality 
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What about Post-RTL Synthesis?

ca b

o1 o2

Example: map to 3-input LUTs
a

Focus of this talk

a c

o2

b c

a

o1

[1] Farrahi and Sarrafzadeh, TCAD’02



� A typical area-minimizing script in ABC: 
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Typical Pre-mapping Transformation Sequence

Initial and-inverter graph for xor5

balance     rewrite balance rewrite

balance rewrite

balance

rewrite
technology 

mapping

A predetermined technology-independent optimization sequence
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Autotuning Logic Synthesis Tool

� Applying DATuner, a distributed autotuning framework, 
to auto determine the logic transformation sequence

DATuner

Optimized tool 
settings

Design
CAD Tool

Settings

QoR

retime

rewire

off

off

on

on

github.com/cornell-zhang/datuner
C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, and Z. Zhang, A Parallel Bandit-Based Approach for Autotuning
FPGA Compilation, FPGA’2017.



� Separating promising from unpromising subspaces
– Guided by information gain derived from QoR of known samples

DATuner: Dynamic Solution Space Partitioning
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� ABC Optimized: designs optimized with compress2rs script
� DATuner: a budget of 128 ABC runs across 4 machines
� EPFL benchmarks: http://lsi.epfl.ch/benchmarks

Autotuning vs. ABC: Unconstrained Area Minimization
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� ABC Optimized: designs optimized with compress2rs script
� DATuner: a budget of 128 ABC runs across 4 machines
� EPFL benchmarks: http://lsi.epfl.ch/benchmarks

– Best known results: from EPFL record, version 2017.1

Autotuning vs. Best Known Records (v2017.1) 
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ABC Optimized DATuner Best known results (2017.1 version)

7% improvement

29% over 
baseline



� Mapping-guided logic transformations
– Iteratively improve area

� Effective partitioning and parallelization technique
– Improve both runtime and design quality

PIMap: Parallelized Mapping-Aware Logic Synthesis 
[FPGA’17]
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thread 1 thread 2

…

Logic transformation Technology mapping

G. Liu and Z. Zhang, A Parallelized Iterative Improvement Approach to Area Optimization for LUT-Based 
Technology Mapping, FPGA’2017.
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PIMap Technique: Iterative Area Minimization 

Use mapping result to guide randomly 
proposed logic transformations



13

PIMap Technique: Iterative Area Minimization 

15 LUTs

Use mapping result to guide randomly 
proposed logic transformations
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PIMap Technique: Iterative Area Minimization 

15 LUTs

Transformation #1

14 LUTs

Use mapping result to guide randomly 
proposed logic transformations
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PIMap Technique: Iterative Area Minimization 

15 LUTs

Transformation #1

14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]: 
Accept current transformation if 789: 0,1 < exp	(−@ ABCD↓FGH

ABCD↓IJK
)

Use mapping result to guide randomly 
proposed logic transformations
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PIMap Technique: Iterative Area Minimization 

15 LUTs

Transformation #1 Transformation #2

14 LUTs 14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]: 
Accept current transformation if 789: 0,1 < exp	(−@ ABCD↓FGH

ABCD↓IJK
)

Use mapping result to guide randomly 
proposed logic transformations
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PIMap Technique: Iterative Area Minimization 

15 LUTs

Transformation #1 Transformation #2

14 LUTs 14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]: 
Accept current transformation if 789: 0,1 < exp	(−@ ABCD↓FGH

ABCD↓IJK
)

Use mapping result to guide randomly 
proposed logic transformations



18

PIMap Technique: Iterative Area Minimization 

15 LUTs

Transformation #1 Transformation #2

…

14 LUTs 14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]: 
Accept current transformation if 789: 0,1 < exp	(−@ ABCD↓FGH

ABCD↓IJK
)

Use mapping result to guide randomly 
proposed logic transformations



� Without partitioning
– Long runtime per trial
– Easily stuck at local minimum

Need for Partitioning
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EPFL design: div
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PIMap Technique: Partitioning and Parallelization

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs
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Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

PIMap Technique: Partitioning and Parallelization



22

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

PIMap Technique: Partitioning and Parallelization
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Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

PIMap Technique: Partitioning and Parallelization
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15 LUTs
15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

Subgraph 1 Subgraph 2

PIMap Technique: Partitioning and Parallelization
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Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

PIMap Technique: Partitioning and Parallelization
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14 LUTs 15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

PIMap Technique: Partitioning and Parallelization
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14 LUTs 15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

PIMap Technique: Partitioning and Parallelization
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14 LUTs 15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

33 LUTs

PIMap Technique: Partitioning and Parallelization
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Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

Repartition using different seeds

33 LUTs

Optimized design after trial 1

PIMap Technique: Repartition
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Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

Repartition using different seeds Iterative area minimization

33 LUTs

Optimized design after trial 1

Recombine subgraphs

PIMap Technique: Repartition



31

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

One trial

Repartition using different seeds Iterative area minimization

33 LUTs

Optimized design after trial 1

Recombine subgraphs

PIMap Technique: Repartition



Partitioning Schemes
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No partition
16 partitions, 5 LUTs/partition

32

EPFL design: div

� Without partitioning
– Long runtime per trial
– Easily stuck in local optima

� Fine-grained partition
– Bear a similarity to exact synthesis
– Fast runtime per trial
– But slow progress overall 



� Without partitioning
– Long runtime per trial
– Easily stuck in local optima

� Fine-grained partition
– Bear a similarity to exact synthesis
– Fast runtime per trial
– But slow progress overall

� Coarse-grained partition
– Balance runtime and solution quality
– Repartition between trials to further 

improve quality 

Partitioning Schemes
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3800

3900
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No partition
16 partitions, 5 LUTs/partition
16 partitions, 100 LUTs/partition

33

EPFL design: div
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PIMap Overall Flow

Design C1908 from the MCNC benchmark suite
5 trials in total

Observations:
1. Partition boundaries vary between trials

Uncover better structure
2. Overall network structure differ significantly between trials

Discover a wide range of designs



Experimental Setup
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ABC’s tech 
mapper

ABC’s logic 
transformations: 

balance, rewrite, refactor

Benchmark Initial design
10 largest 

MCNC 
designs [1]

pre-synthesized using 
ABC’s compress2rs

script
EPFL 

arithmetic 
designs [2]

best-known mapping 
designs [2]

Iterative area 
minimization 

routine

Subgraph extraction 
and parallelization 

control

PIMap toolchain Benchmarks

[1] Yang, MCNC’91
[2] Amarù, et al., http://lsi.epfl.ch/benchmarks

Configuration 40 trials, 100 iterations of area minimization per trial
Partitioning up to 16 subgraphs, each with up to 100 LUTs

Computing resource up to 8 machines, each with a quad-core Xeon processor

Setup
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Area Minimization Results

� Initial design: best-known results from EPFL record
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Area Minimization Results
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7% improvement14% improvement
(3800 to 3281 LUTs)

� Initial design: best-known results from EPFL record
� Area improvements

– EPFL: 7% on average, up to 14%



� Initial design: best-known results from EPFL record
� Area improvements

– EPFL: 7% on average, up to 14%
– Can effectively handle large circuit (~44k LUTs)

� Also able to improve all 10 control-intensive designs in EPFL 
benchmark suite
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Area Minimization Results
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LUT Count vs. Gate Count Reduction
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Verified: 
post-mapping area does not necessarily correlate with pre-mapping area



� Trade-off between runtime vs. progress per trial
– Optimal subgraph size is around 100 LUTs

Partition Granularity vs. Runtime
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� Constraint: no depth increase compared to initial design
– Initial designs generated by ABC’s depth-minimizing resyn2 script

� Area improvements under depth constraint for MCNC benchmarks
– 11% on average, up to 30%
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Depth Constrained Area Minimization on MCNC

design name
(initial LUT count/depth)
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Extending PIMap to Approximate Logic Synthesis

One trial

Repartition using different seeds Iterative area minimization

Recombine subgraphs

Hypothesis testing of error metric

Approximate transformations

42



� Previous approaches (sample-based testing):
– Randomly pick N input vectors,  then simulate, error rate = Nincorrect/N

� Our approach: Formally quantify errors using hypothesis testing

Statistically Certified Approximate Synthesis
[ICCAD’17]
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Error metric Test target Test statistic
Error rate Sample occurrence Binomial test

Average error magnitude Sample mean T-test
Error variance Sample variance L2-test

Testing different types of error metrics

G. Liu and Z. Zhang, Statistically Certified Approximate Logic Synthesis, ICCAD’2017.



� Current logic synthesis flow still leaves nontrivial room for area 
improvement (up to 30%) 

� Parallelized stochastic optimization is an effective approach for 
technology-aware synthesis

� Similar opportunities exist in RTL and high-level synthesis
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PIMap Summary

Chortle

DAGMap

FlowMap

CutMap
DAOMap

K and L
IMap

ABC Map

Exact 
synthesis
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Chortle: Francis, et al., DAC’90
DAGMap: Chen, et al., DT’92
FlowMap: Cong and Ding, TCAD’94

CutMap: Cong and Hwang, FPGA’95
DAOMap: Chen and Cong, ICCAD’04
K and L: Kao and Lai, TDAES’05

Imap: Manohararajah, et al., TCAD’06
ABC Map: Mishchenko, et al., TCAD’07
Exact synthesis: Haaswijk, et al., ASPDAC’17


